Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Liver Int ; 44(3): 760-775, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217387

RESUMEN

BACKGROUND AND AIMS: Drug-induced liver injury (DILI) is one of the most frequent reasons for failure of drugs in clinical trials or market withdrawal. Early assessment of DILI risk remains a major challenge during drug development. Here, we present a mechanism-based weight-of-evidence approach able to identify certain candidate compounds with DILI liabilities due to mitochondrial toxicity. METHODS: A total of 1587 FDA-approved drugs and 378 kinase inhibitors were screened for cellular stress response activation associated with DILI using an imaging-based HepG2 BAC-GFP reporter platform including the integrated stress response (CHOP), DNA damage response (P21) and oxidative stress response (SRXN1). RESULTS: In total 389, 219 and 104 drugs were able to induce CHOP-GFP, P21-GFP and SRXN1-GFP expression at 50 µM respectively. Concentration response analysis identified 154 FDA-approved drugs as critical CHOP-GFP inducers. Based on predicted and observed (pre-)clinical DILI liabilities of these drugs, nine antimycotic drugs (e.g. butoconazole, miconazole, tioconazole) and 13 central nervous system (CNS) agents (e.g. duloxetine, fluoxetine) were selected for transcriptomic evaluation using whole-genome RNA-sequencing of primary human hepatocytes. Gene network analysis uncovered mitochondrial processes, NRF2 signalling and xenobiotic metabolism as most affected by the antimycotic drugs and CNS agents. Both the selected antimycotics and CNS agents caused impairment of mitochondrial oxygen consumption in both HepG2 and primary human hepatocytes. CONCLUSIONS: Together, the results suggest that early pre-clinical screening for CHOP expression could indicate liability of mitochondrial toxicity in the context of DILI, and, therefore, could serve as an important warning signal to consider during decision-making in drug development.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatocitos , Humanos , Células Hep G2 , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo , Perfilación de la Expresión Génica
2.
Toxicol Sci ; 198(1): 14-30, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015832

RESUMEN

Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene coregulation network-based transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of toxicogenomic data. Here we performed an extensive concentration time course response-toxicogenomic study in the HepG2 cell line exposed to 20 DILI compounds, 7 reference compounds for stress response pathways, and 10 agonists for cytokines and growth factor receptors. We performed whole transcriptome targeted RNA sequencing to more than 500 conditions and applied weighted gene coregulated network analysis to the transcriptomics data followed by the identification of gene coregulated networks (modules) that were strongly modulated upon the exposure of DILI compounds. Preservation analysis on the module responses of HepG2 and PHH demonstrated highly preserved adaptive stress response gene coregulated networks. We correlated gene coregulated networks with cell death onset and causal relationships of 67 critical target genes of these modules with the onset of cell death was evaluated using RNA interference screening. We identified GTPBP2, HSPA1B, IRF1, SIRT1, and TSC22D3 as essential modulators of DILI compound-induced cell death. These genes were also induced by DILI compounds in PHH. Altogether, we demonstrate the application of large transcriptome datasets combined with network-based analysis and biological validation to uncover the candidate determinants of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Transcriptoma , Humanos , Células Hep G2 , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Enfermedad Hepática Inducida por Sustancias y Drogas/genética
4.
iScience ; 26(3): 106094, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895646

RESUMEN

Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals.

5.
ALTEX ; 39(2): 207­220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35040482

RESUMEN

Chemical read-across is commonly evaluated without specific knowledge of the biological mechanisms leading to observed adverse outcomes in vivo. Integrating data that indicate shared modes of action in humans will strengthen read-across cases. Here we studied transcriptomic responses of primary human hepatocytes (PHH) to a large panel of carboxylic acids to include detailed mode-of-action data as a proof-of-concept for read-across in risk assessment. In rodents, some carboxylic acids, including valproic acid (VPA), are known to cause hepatic steatosis, whereas others do not. We investigated transcriptomics responses of PHHs exposed for 24 h to 18 structurally different VPA analogues in a concentration range to determine biological similarity in relation to in vivo steatotic potential. Using a targeted high-throughput screening assay, we assessed the differential expression of ~3,000 genes covering relevant biological pathways. Differentially expressed gene analysis revealed differences in potency of carboxylic acids, and expression patterns were highly similar for structurally similar compounds. Strong clustering occurred for steatosis-positive versus steatosis-negative carboxylic acids. To quantitatively define biological read-across, we combined pathway analysis and weighted gene co-expression network analysis. Active carboxylic acids displayed high similarity in gene network modulation. Importantly, free fatty acid synthesis modulation and stress pathway responses are affected by active car­boxylic acids, providing coherent mechanistic underpinning for our findings. Our work shows that transcriptomic analysis of cultured human hepatocytes can reinforce the prediction of liver injury outcome based on quantitative and mechanistic biological data and support its application in read-across.


Asunto(s)
Transcriptoma , Ácido Valproico , Ácidos Carboxílicos/metabolismo , Hepatocitos/metabolismo , Hígado , Ácido Valproico/metabolismo , Ácido Valproico/toxicidad
6.
Arch Toxicol ; 96(1): 259-285, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34642769

RESUMEN

Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Transporte de Electrón , Células Hep G2 , Hepatocitos , Humanos
7.
Arch Toxicol ; 95(12): 3745-3775, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626214

RESUMEN

Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we present the TXG-MAPr webtool (available at https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/ ), an R-Shiny-based implementation of weighted gene co-expression network analysis (WGCNA) obtained from the Primary Human Hepatocytes (PHH) TG-GATEs dataset. The 398 gene co-expression networks (modules) were annotated with functional information (pathway enrichment, transcription factor) to reveal their mechanistic interpretation. Several well-known stress response pathways were captured in the modules, were perturbed by specific stressors and showed preservation in rat systems (rat primary hepatocytes and rat in vivo liver), with the exception of DNA damage and oxidative stress responses. A subset of 87 well-annotated and preserved modules was used to evaluate mechanisms of toxicity of endoplasmic reticulum (ER) stress and oxidative stress inducers, including cyclosporine A, tunicamycin and acetaminophen. In addition, module responses can be calculated from external datasets obtained with different hepatocyte cells and platforms, including targeted RNA-seq data, therefore, imputing biological responses from a limited gene set. As another application, donors' sensitivity towards tunicamycin was investigated with the TXG-MAPr, identifying higher basal level of intrinsic immune response in donors with pre-existing liver pathology. In conclusion, we demonstrated that gene co-expression analysis coupled to an interactive visualization environment, the TXG-MAPr, is a promising approach to achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Medición de Riesgo/métodos , Toxicogenética/métodos , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Ciclosporina/toxicidad , Conjuntos de Datos como Asunto , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especificidad de la Especie , Tunicamicina/toxicidad
8.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800393

RESUMEN

eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI), which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub) that support the translational safety assessment of new drugs by using legacy data provided by the pharmaceutical companies that participate in the project. The project objectives include the development of databases containing preclinical and clinical data, computational systems for translational analysis including tools for data query, analysis and visualization, as well as computational models to explain and predict drug safety events.

9.
Biol Direct ; 16(1): 5, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33435983

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is an adverse reaction caused by the intake of drugs of common use that produces liver damage. The impact of DILI is estimated to affect around 20 in 100,000 inhabitants worldwide each year. Despite being one of the main causes of liver failure, the pathophysiology and mechanisms of DILI are poorly understood. In the present study, we developed an ensemble learning approach based on different features (CMap gene expression, chemical structures, drug targets) to predict drugs that might cause DILI and gain a better understanding of the mechanisms linked to the adverse reaction. RESULTS: We searched for gene signatures in CMap gene expression data by using two approaches: phenotype-gene associations data from DisGeNET, and a non-parametric test comparing gene expression of DILI-Concern and No-DILI-Concern drugs (as per DILIrank definitions). The average accuracy of the classifiers in both approaches was 69%. We used chemical structures as features, obtaining an accuracy of 65%. The combination of both types of features produced an accuracy around 63%, but improved the independent hold-out test up to 67%. The use of drug-target associations as feature obtained the best accuracy (70%) in the independent hold-out test. CONCLUSIONS: When using CMap gene expression data, searching for a specific gene signature among the landmark genes improves the quality of the classifiers, but it is still limited by the intrinsic noise of the dataset. When using chemical structures as a feature, the structural diversity of the known DILI-causing drugs hampers the prediction, which is a similar problem as for the use of gene expression information. The combination of both features did not improve the quality of the classifiers but increased the robustness as shown on independent hold-out tests. The use of drug-target associations as feature improved the prediction, specially the specificity, and the results were comparable to previous research studies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Aprendizaje Automático , Preparaciones Farmacéuticas/química , Biología de Sistemas , Humanos , Modelos Biológicos
10.
Toxicol In Vitro ; 65: 104757, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31904401

RESUMEN

Cadmium is a toxic metal able to enter the cells through channels and transport pathways dedicated to essential ions, leading, among others, to the dysregulation of divalent ions homeostasis. Despite its recognized human carcinogenicity, the mechanisms are still under investigation. A powerful tool for mechanistic studies of carcinogenesis is the Cell Transformation Assay (CTA). We have isolated and characterized by whole genome microarray and bioinformatics analysis of differentially expressed genes (DEGs) cadmium-transformed cells from different foci (F1, F2, and F3) at the end of CTA (6 weeks). The systematic analysis of up- and down-regulated transcripts and the comparison of DEGs in transformed cells evidence different functional targets and the complex picture of cadmium-induced transformation. Only 34 in common DEGs are found in cells from all foci, and among these, only 4 genes are jointly up-regulated (Ccl2, Ccl5, IL6 and Spp1), all responsible for cytokines/chemokines coding. Most in common DEGs are down-regulated, suggesting that the switching-off of specific functions plays a major role in this process. In addition, the comparison of dysregulated pathways immediately after cadmium treatment with those in transformed cells provides a valuable means to the comprehension of the overall process.


Asunto(s)
Cadmio/toxicidad , Carcinógenos/toxicidad , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Línea Celular , Transformación Celular Neoplásica/genética , Biología Computacional , Citocinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones
11.
Arch Toxicol ; 93(10): 2895-2911, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31552476

RESUMEN

Adaptive stress response pathways play a key role in the switch between adaptation and adversity, and are important in drug-induced liver injury. Previously, we have established an HepG2 fluorescent protein reporter platform to monitor adaptive stress response activation following drug treatment. HepG2 cells are often used in high-throughput primary toxicity screening, but metabolizing capacity in these cells is low and repeated dose toxicity testing inherently difficult. Here, we applied our bacterial artificial chromosome-based GFP reporter cell lines representing Nrf2 activation (Srxn1-GFP and NQO1-GFP), unfolded protein response (BiP-GFP and Chop-GFP), and DNA damage response (p21-GFP and Btg2-GFP) as long-term differentiated 3D liver-like spheroid cultures. All HepG2 GFP reporter lines differentiated into 3D spheroids similar to wild-type HepG2 cells. We systematically optimized the automated imaging and quantification of GFP reporter activity in individual spheroids using high-throughput confocal microscopy with a reference set of DILI compounds that activate these three stress response pathways at the transcriptional level in primary human hepatocytes. A panel of 33 compounds with established DILI liability was further tested in these six 3D GFP reporters in single 48 h treatment or 6 day daily repeated treatment. Strongest stress response activation was observed after 6-day repeated treatment, with the BiP and Srxn1-GFP reporters being most responsive and identified particular severe-DILI-onset compounds. Compounds that showed no GFP reporter activation in two-dimensional (2D) monolayer demonstrated GFP reporter stress response activation in 3D spheroids. Our data indicate that the application of BAC-GFP HepG2 cellular stress reporters in differentiated 3D spheroids is a promising strategy for mechanism-based identification of compounds with liability for DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Diferenciación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Daño del ADN/efectos de los fármacos , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Células Hep G2 , Hepatocitos/patología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Microscopía Confocal/métodos , Esferoides Celulares/patología , Estrés Fisiológico/efectos de los fármacos
12.
Arch Toxicol ; 93(2): 385-399, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30426165

RESUMEN

The transcription factor NRF2, governed by its repressor KEAP1, protects cells against oxidative stress. There is interest in modelling the NRF2 response to improve the prediction of clinical toxicities such as drug-induced liver injury (DILI). However, very little is known about the makeup of the NRF2 transcriptional network and its response to chemical perturbation in primary human hepatocytes (PHH), which are often used as a translational model for investigating DILI. Here, microarray analysis identified 108 transcripts (including several putative novel NRF2-regulated genes) that were both downregulated by siRNA targeting NRF2 and upregulated by siRNA targeting KEAP1 in PHH. Applying weighted gene co-expression network analysis (WGCNA) to transcriptomic data from the Open TG-GATES toxicogenomics repository (representing PHH exposed to 158 compounds) revealed four co-expressed gene sets or 'modules' enriched for these and other NRF2-associated genes. By classifying the 158 TG-GATES compounds based on published evidence, and employing the four modules as network perturbation metrics, we found that the activation of NRF2 is a very good indicator of the intrinsic biochemical reactivity of a compound (i.e. its propensity to cause direct chemical stress), with relatively high sensitivity, specificity, accuracy and positive/negative predictive values. We also found that NRF2 activation has lower sensitivity for the prediction of clinical DILI risk, although relatively high specificity and positive predictive values indicate that false positive detection rates are likely to be low in this setting. Underpinned by our comprehensive analysis, activation of the NRF2 network is one of several mechanism-based components that can be incorporated into holistic systems toxicology models to improve mechanistic understanding and preclinical prediction of DILI in man.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Redes Reguladoras de Genes/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/patología , Humanos , Isotiocianatos/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Interferente Pequeño , Sulfóxidos
13.
Toxicol In Vitro ; 48: 232-243, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408670

RESUMEN

Cadmium is a well recognized carcinogen, primarily released into the environment by anthropogenic activities. In the effort to understand the early events responsible for cadmium carcinogenesis, we have used an in vitro biological system (the Cell Transformation Assay, CTA), that has been shown to closely model some key stages of the conversion of normal cells into malignant ones. Cadmium-triggered early responses in CTA were analysed through microarray-based toxicogenomics. Metallothioneins represent the earliest cell response, together with Slc30a1 encoding for a ZnT-1 zinc exporter. Other genes were found to be up-regulated in the first 24 h following Cd administration: phospatidylinositol-4-phospate 5-kinase alpha (Pip5k1a), glutathione S-transferase (Gstα 1-3), Gdf15 and aldolase. However, after the exposure, a number of genes expressing zinc proteins were found to be down-regulated, among which were many olfactory receptors (ORs) coding genes. Cd administration also promoted massive Zn release inside the cell that could be related to moonlighting activities of regulated genes (proteins). On the whole our data suggest that, despite the early involvement of defence mechanisms (metallothionein and GST), Cd-triggered Zn release, as well as Cd interference with different proteins, may lead to gene expression alterations which later induce metabolic changes, directing the cells towards uncontrolled growth.


Asunto(s)
Cadmio/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Toxicogenética/métodos , Animales , Carcinógenos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Metalotioneína/metabolismo , Ratones , Ratones Endogámicos C3H , Análisis por Micromatrices , Receptores Odorantes/efectos de los fármacos , Receptores Odorantes/genética , Transducción de Señal/efectos de los fármacos , Zinc/metabolismo
14.
Toxicol In Vitro ; 45(Pt 3): 351-358, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28461232

RESUMEN

The identification of the carcinogenic risk of chemicals is currently mainly based on animal studies. The in vitro Cell Transformation Assays (CTAs) are a promising alternative to be considered in an integrated approach. CTAs measure the induction of foci of transformed cells. CTAs model key stages of the in vivo neoplastic process and are able to detect both genotoxic and some non-genotoxic compounds, being the only in vitro method able to deal with the latter. Despite their favorable features, CTAs can be further improved, especially reducing the possible subjectivity arising from the last phase of the protocol, namely visual scoring of foci using coded morphological features. By taking advantage of digital image analysis, the aim of our work is to translate morphological features into statistical descriptors of foci images, and to use them to mimic the classification performances of the visual scorer to discriminate between transformed and non-transformed foci. Here we present a classifier based on five descriptors trained on a dataset of 1364 foci, obtained with different compounds and concentrations. Our classifier showed accuracy, sensitivity and specificity equal to 0.77 and an area under the curve (AUC) of 0.84. The presented classifier outperforms a previously published model.


Asunto(s)
Pruebas de Carcinogenicidad/clasificación , Transformación Celular Neoplásica/clasificación , Algoritmos , Animales , Células 3T3 BALB , Teorema de Bayes , Entropía , Procesamiento de Imagen Asistido por Computador , Ratones , Modelos Biológicos , Mutágenos/toxicidad
15.
J Appl Toxicol ; 37(6): 709-720, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27917502

RESUMEN

Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Interpretación Estadística de Datos , Interpretación de Imagen Asistida por Computador , Animales , Células 3T3 BALB , Benzo(a)pireno/toxicidad , Pruebas de Carcinogenicidad/métodos , Pruebas de Carcinogenicidad/estadística & datos numéricos , Relación Dosis-Respuesta a Droga , Ratones , Microscopía/métodos , Microscopía/estadística & datos numéricos , Níquel/toxicidad
16.
Toxicol In Vitro ; 29(7): 1839-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26183914

RESUMEN

Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms. The in vitro cell transformation assay (CTA) is a promising tool for both genotoxic and non-genotoxic carcinogenesis. CTA relies on the ability of cells (e.g. BALB/c 3T3 mouse embryo fibroblasts) to develop a transformed phenotype after the treatment with suspected carcinogens. The classification of the transformed phenotype is based on coded morphological features, which are scored under a light microscope by trained experts. This procedure is time-consuming and somewhat prone to subjectivity. Herewith we provide a promising approach based on image analysis to support the scoring of malignant foci in BALB/c 3T3 CTA. The image analysis system is a quantitative approach, based on measuring features of malignant foci: dimension, multilayered growth, and invasivity into the surrounding monolayer of non-transformed cells. A logistic regression model was developed to estimate the probability for each focus to be transformed as a function of three statistical image descriptors. The estimated sensitivity of the derived classifier (untransformed against Type III) was 0.9, with an Area Under the Curve (AUC) value equal to 0.90 under the Receiver Operating Characteristics (ROC) curve.


Asunto(s)
Transformación Celular Neoplásica , Interpretación de Imagen Asistida por Computador , Animales , Área Bajo la Curva , Células 3T3 BALB , Bioensayo , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Modelos Logísticos , Ratones , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA